5 research outputs found

    A multiobjective model for passive portfolio management: an application on the S&P 100 index

    Get PDF
    This is an author's accepted manuscript of an article published in: “Journal of Business Economics and Management"; Volume 14, Issue 4, 2013; copyright Taylor & Francis; available online at: http://dx.doi.org/10.3846/16111699.2012.668859Index tracking seeks to minimize the unsystematic risk component by imitating the movements of a reference index. Partial index tracking only considers a subset of the stocks in the index, enabling a substantial cost reduction in comparison with full tracking. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional index tracking techniques may need different stocks to build the different portfolios. The aim of this paper is to propose a methodology that enables a fund s manager to satisfy different clients investment profiles but using in all cases the same subset of stocks, and considering not only one particular criterion but a compromise between several criteria. For this purpose we use a mathematical programming model that considers the tracking error variance, the excess return and the variance of the portfolio plus the curvature of the tracking frontier. The curvature is not defined for a particular portfolio, but for all the portfolios in the tracking frontier. This way funds managers can offer their clients a wide range of risk-return combinations just picking the appropriate portfolio in the frontier, all of these portfolios sharing the same shares but with different weights. An example of our proposal is applied on the S&P 100.García García, F.; Guijarro Martínez, F.; Moya Clemente, I. (2013). A multiobjective model for passive portfolio management: an application on the S&P 100 index. Journal of Business Economics and Management. 14(4):758-775. doi:10.3846/16111699.2012.668859S758775144Aktan, B., Korsakienė, R., & Smaliukienė, R. (2010). TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS. Journal of Business Economics and Management, 11(3), 511-532. doi:10.3846/jbem.2010.25Ballestero, E., & Romero, C. (1991). A theorem connecting utility function optimization and compromise programming. Operations Research Letters, 10(7), 421-427. doi:10.1016/0167-6377(91)90045-qBeasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Beasley, J. E., Meade, N., & Chang, T.-J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643. doi:10.1016/s0377-2217(02)00425-3Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-399. doi:10.1016/j.ejor.2008.03.015Connor, G., & Leland, H. (1995). Cash Management for Index Tracking. Financial Analysts Journal, 51(6), 75-80. doi:10.2469/faj.v51.n6.1952Corielli, F., & Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8), 2215-2233. doi:10.1016/j.jbankfin.2005.07.012Derigs, U., & Nickel, N.-H. (2004). On a Local-Search Heuristic for a Class of Tracking Error Minimization Problems in Portfolio Management. Annals of Operations Research, 131(1-4), 45-77. doi:10.1023/b:anor.0000039512.98833.5aDose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and its Applications, 355(1), 145-151. doi:10.1016/j.physa.2005.02.078Focardi, S. M., & Fabozzi 3, F. J. (2004). A methodology for index tracking based on time-series clustering. Quantitative Finance, 4(4), 417-425. doi:10.1080/14697680400008668Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163(1), 115-131. doi:10.1016/j.ejor.2003.12.001Hallerbach, W. G., & Spronk, J. (2002). The relevance of MCDM for financial decisions. Journal of Multi-Criteria Decision Analysis, 11(4-5), 187-195. doi:10.1002/mcda.328Jarrett, J. E., & Schilling, J. (2008). DAILY VARIATION AND PREDICTING STOCK MARKET RETURNS FOR THE FRANKFURTER BÖRSE (STOCK MARKET). Journal of Business Economics and Management, 9(3), 189-198. doi:10.3846/1611-1699.2008.9.189-198Roll, R. (1992). A Mean/Variance Analysis of Tracking Error. The Journal of Portfolio Management, 18(4), 13-22. doi:10.3905/jpm.1992.701922Rudolf, M., Wolter, H.-J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85-103. doi:10.1016/s0378-4266(98)00076-4Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4Rutkauskas, A. V., & Stasytyte, V. (s. f.). Decision Making Strategies in Global Exchange and Capital Markets. Advances and Innovations in Systems, Computing Sciences and Software Engineering, 17-22. doi:10.1007/978-1-4020-6264-3_4Tabata, Y., & Takeda, E. (1995). Bicriteria Optimization Problem of Designing an Index Fund. Journal of the Operational Research Society, 46(8), 1023-1032. doi:10.1057/jors.1995.139Teresienė, D. (2009). LITHUANIAN STOCK MARKET ANALYSIS USING A SET OF GARCH MODELS. Journal of Business Economics and Management, 10(4), 349-360. doi:10.3846/1611-1699.2009.10.349-36

    The detailed studies of the structural and magnetic properties of hexaferrites Ba<inf>1−x</inf>Sr<inf>x</inf>Fe<inf>12</inf>O<inf>19</inf> for 0.0 ≤ x ≤ 0.75

    No full text
    The monophase polycrystalline hexaferrites Ba1−xSrxFe12O19 for 0 ≤ x ≤ 0.75 were prepared using the sol–gel synthesis method. The average crystallite size (Dac) ranged from 47 to 50 nm with Sr doping. The crystal structure and magnetic properties have been studied using X-ray diffraction (XRD) and neutron diffraction (ND). The structure of the studied hexaferrites is described by the hexagonal symmetry of P63/mmc space group. Field-emission scanning electron microscopy (FE-SEM) revealed the heterogeneous distribution of the grain sizes, which takes the hexagonal shape. Energy-dispersive X-ray spectroscopy (EDS) showed that the element compositions agree with the used components for each prepared sample. The substitution of Ba2+ ions by Sr2+ enhances the thermal stability of these hexaferrites. The magnetic hysteresis loops for the studied hexaferrite samples were obtained at room temperature. Different magnetic parameters are given in this work. The magnetocrystalline anisotropy parameter (Keff) initially increases for x ≤ 0.5 and then decreases for (x = 0.75). According to the analysis of neutron data, the magnetic structure formed by the Fe3+ ions, is located in five non-equivalent crystallographic sites with tetrahedral (Fe3-4f1), octahedral (Fe1-2a, Fe4-4f2, and Fe5-12k), and trigonal bipyramidal (Fe2-2b) coordinations. The strontium doping BaFe12O19 (BFO) hexaferrite affects the crystal lattice parameters, bond lengths, bond angles, and ordered magnetic moments of iron. Finally, the enhancement of the thermal stability and some magnetic parameters of the studied hexaferrite samples could be important for applications
    corecore